Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 35(3): 582-589, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38361441

RESUMO

Synthetic cannabinoids, a subclass of new psychoactive substances (NPS), are laboratory-made substances that are chemically similar to those found naturally in the cannabis plant. Many of these substances are illicitly manufactured and have been associated with severe health problems, prompting a need to develop analytical methods capable of characterizing both known and previously undetected compounds. This work focuses on a novel Structures for Lossless Ion Manipulations (SLIM) IM-MS approach to the differentiation and structural characterization of synthetic cannabinoid metabolites, specifically MDA-19/BUTINACA, JWH-018, and JWH-250 isomer groups. These different compound classes are structurally very similar, differing only in the position of one or a few functional groups; this yielded similarity in measured collision cross section (CCS) values. However, the high resolution of SLIM IM provided adequate separation of many of these isomers, such as sodiated JWH-250 metabolites N-4-OH, N-5-OH, and 5-OH, which displayed CCS of 187.5, 182.5, and 202.3 Å2, respectively. In challenging cases where baseline separation was precluded due to nearly identical CCS, such as for JWH-018 isomers, simple derivatization by dansyl chloride selectively reacted with the 6-OH compound to provide differentiation of all isomers using a combination of CCS and m/z. Finally, the opportunity to use this method for structural elucidation of unknowns was demonstrated by using SLIM IM mobility-aligned MS/MS fragmentation. Different MDA-19/BUTINACA isomers were first mobility separated and could then be individually activated, yielding unique fragments for both targeted identification and structural determination. Overall, the described SLIM IM-MS/MS workflow provides significant potential as a rapid screening tool for the characterization of emerging NPS such as synthetic cannabinoids and their metabolites.


Assuntos
Anisóis , Canabinoides , Naftalenos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Indóis/química
2.
Analyst ; 149(1): 125-136, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37982746

RESUMO

Native ion mobility mass spectrometry has been used extensively to characterize ensembles of intrinsically disordered protein (IDP) conformers, but the extent to which the gaseous measurements provide realistic pictures of the solution conformations for such flexible proteins remains unclear. Therefore, we systematically studied the relationship between the solution and gaseous structural ensembles by measuring electrospray charge state and collision cross section (CCS) distributions for cationic and anionic forms of α-synuclein (αSN), an anionic protein in solution, as well as directly probed gas phase residue to residue distances via ion/ion reactions between gaseous α-synuclein cations and disulfonic acid linkers that form strong electrostatic bonds. We also combined results from in-solution protein crosslinking identified from native tandem mass spectrometry (MS/MS) with an initial αSN ensemble generated computationally by IDPConformerGenerator to generate an experimentally restrained solution ensemble of αSN. CCS distributions were directly calculated for the solution ensembles determined by NMR and compared to predicted gaseous conformers. While charge state and collision cross section distributions are useful for qualitatively describing the relative structural dynamics of proteins and major conformational changes induced by changes to solution states, the predicted and measured gas phase conformers include subpopulations that are significantly different than those expected from completely "freezing" solution conformations and preserving them in the gas phase. However, insights were gained on the various roles of solvent in stabilizing various conformers for extremely dynamic proteins like α-synuclein.


Assuntos
Proteínas Intrinsicamente Desordenadas , alfa-Sinucleína , alfa-Sinucleína/química , Conformação Proteica , Espectrometria de Massas em Tandem , Proteínas Intrinsicamente Desordenadas/química
3.
Anal Bioanal Chem ; 415(27): 6757-6769, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740752

RESUMO

Over the last decade, applications of ion mobility-mass spectrometry (IM-MS) have exploded due primarily to the widespread commercialization of robust instrumentation from several vendors. Unfortunately, the modest resolving power of many of these platforms (~40-60) has precluded routine separation of constitutional and stereochemical isomers. While instrumentation advances have pushed resolving power to >150 in some cases, chemical approaches offer an alternative for increasing resolution with existing IM-MS instrumentation. Herein we explore the utility of two reactions, derivatization by Girard's reagents and 1,1-carbonyldiimidazole (CDI), for improving IM separation of steroid hormone isomers. These reactions are fast (≤30 min), simple (requiring only basic lab equipment/expertise), and low-cost. Notably, these reactions are structurally selective in that they target carbonyl and hydroxyl groups, respectively, which are found in all naturally occurring steroids. Many steroid hormone isomers differ only in the number, location, and/or stereochemistry of these functional groups, allowing these reactions to "amplify" subtle structural differences and improve IM resolution. Our results show that resolution was significantly improved amongst CDI-derivatized isomer groups of hydroxyprogesterone (two-peak resolution of Rpp = 1.10 between 21-OHP and 11B-OHP), deoxycortisone (Rpp = 1.47 between 11-DHC and 21-DOC), and desoximetasone (Rpp = 1.98 between desoximetasone and fluocortolone). Moreover, characteristic collision cross section (DTCCSN2) measurements can be used to increase confidence in the identification of these compounds in complex biological mixtures. To demonstrate the feasibility of analyzing the derivatized steroids in complex biological matrixes, the reactions were performed following steroid extraction from urine and yielded similar results. Additionally, we applied a software-based approach (high-resolution demultiplexing) that further improved the resolving power (>150). Overall, our results suggest that targeted derivatization reactions coupled with IM-MS can significantly improve the resolution of challenging isomer groups, allowing for more accurate and efficient analysis of complex mixtures.

4.
Drug Test Anal ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491787

RESUMO

Fentanyl is a potent synthetic opioid that has attracted significant attention due to its illegal production and distribution, resulting in misuse, overdose, and fatalities. Because numerous fentanyl analogs, including structural isomers, with different potency have been discovered in the field, there is a critical need to continue developing analytical methodologies capable of accurate identification in forensic and clinical laboratories. This study aimed to develop a rapid method for detecting and separating fentanyl isomers based on ion mobility-mass spectrometry (IM-MS), where IM separates gas-phase ions based on differences in their size, shape, and charge. Several strategies for improved differentiation were implemented, including using unconventional cation adducts (e.g., alkali and transition metals) and data post-processing by high-resolution demultiplexing. A collection of collision cross section (CCS) values for the various metal ion adducts was gathered, which can be used to improve confidence of identification in future samples. Notable examples, such as [M + Cu]+ and [M + Ag]+ adducts, contributed to significant improvement of resolution between isomers. Furthermore, the addition of high-resolution post-processing provided resolving power of >150, which constitutes a significant increase in comparison with the normal 50-60 obtained with low-resolution drift tube instruments. Collectively, these improved separation strategies allowed for confident detection and subsequent quantitative analysis. The optimized IM-MS method resulted in quantification of fentanyl in human urine with limits of detection and quantification of 13 pg/mL and 40 pg/mL, respectively.

5.
J Am Soc Mass Spectrom ; 34(8): 1708-1714, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37390334

RESUMO

Anabolic steroids are of high biological interest due to their involvement in human development and disease progression. Additionally, they are banned in sport due to their performance-enhancing characteristics. Analytical challenges associated with their measurement stem from structural heterogeneity, poor ionization efficiency, and low natural abundance. Their importance in a variety of clinically relevant assays has prompted the consideration of integrating ion mobility spectrometry (IMS) into existing LC-MS assays, due primarily to its speed and structure-based separation capability. Herein we have optimized a rapid (2 min) targeted LC-IM-MS method for the detection and quantification of 40 anabolic steroids and their metabolites. First, a steroid-specific calibrant mixture was developed to cover the full range of retention time, mobility, and accurate mass. Importantly, this use of this calibrant mixture provided robust and reproducible measurements based on collision cross section (CCS) with interday reproducibility of <0.5%. Furthermore, the combined separation power of LC coupled to IM provided comprehensive differentiation of isomers/isobars within 6 different isobaric groups. Multiplexed IM acquisition also provided improved limits of detection, which were well below 1 ng/mL in almost all compounds measured. This method was also capable of steroid profiling, providing quantitative ratios (e.g., testosterone/epitestosterone, androsterone/etiocholanolone, etc.). Lastly, phase II steroid metabolites were probed in lieu of hydrolysis to demonstrate the ability to separate those analytes and provide information beyond total steroid concentration. This method has tremendous potential for rapid analysis of steroid profiles in human urine spanning a variety of applications from developmental disorders to doping in sport.


Assuntos
Esteróides Androgênicos Anabolizantes , Congêneres da Testosterona , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos , Esteroides/análise
6.
J Am Soc Mass Spectrom ; 34(7): 1477-1490, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37319333

RESUMO

Bile acids (BAs) are a complex suite of clinically relevant metabolites that include many isomers. Liquid chromatography coupled to mass spectrometry (LC-MS) is an increasingly popular technique due to its high specificity and sensitivity; nonetheless, acquisition times are generally 10-20 min, and isomers are not always resolved. In this study, the application of ion mobility (IM) spectrometry coupled to MS was investigated to separate, characterize, and measure BAs. A subset of 16 BAs was studied, including three groups of isomers belonging to unconjugated, glycine-conjugated, and taurine-conjugated BA classes. A variety of strategies were explored to increase BA isomer separation such as changing the drift gas, measuring different ionic species (i.e., multimers and cationized species), and enhancing the instrumental resolving power. In general, Ar, N2, and CO2 provided the best peak shape, resolving power (Rp), and separation, especially CO2; He and SF6 were less preferable. Furthermore, measuring dimers versus monomers improved isomer separation due to enhanced gas-phase structural differences. A variety of cation adducts other than sodium were characterized. Mobility arrival times and isomer separation were affected by the choice of adduct, which was shown to be used to target certain BAs. Finally, a novel workflow that involves high-resolution demultiplexing in combination with dipivaloylmethane ion-neutral clusters was implemented to improve Rp dramatically. A maximum Rp increase was observed with lower IM field strengths to obtain longer drift times, increasing Rp from 52 to 187. A combination of these separation enhancement strategies demonstrates great potential for rapid BA analysis.

8.
J Am Soc Mass Spectrom ; 33(9): 1761-1771, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35914213

RESUMO

Steroids are an important class of biomolecules studied for their role in metabolism, development, nutrition, and disease. Although highly sensitive GC- and LC-MS/MS-based methods have been developed for targeted quantitation of known steroid metabolites, emerging techniques including ion mobility (IM) have shown promise in improved analysis and capacity to better identify unknowns in complex biological samples. Herein, we couple LC-IM-MS/MS with structurally selective reactions targeting hydroxyl and carbonyl functional groups to improve IM resolution and structural elucidation. We demonstrate that 1,1-carbonyldiimidazole derivatization of hydroxyl stereoisomer pairs such as testosterone/epitestosterone and androsterone/epiandrosterone results in increased IM resolution with ΔCCS > 15%. Additionally, performing this in parallel with derivatization of the carbonyl group by Girard's Reagent P resulted in unique products based on relative differences in number of each functional group and C17 alkylation. These changes could be easily deciphered using the combination of retention time, collision cross section, accurate mass, and MS/MS fragmentation pattern. Derivatization by Girard's Reagent P, which contains a fixed charge quaternary amine, also increased the ionization efficiency and could be explored for its potential benefit to sensitivity. Overall, the combination of these simple and easy derivatization reactions with LC-IM-MS/MS analysis provides a method for improved analysis of known target analytes while also yielding critical structural information that can be used for identification of potential unknowns.


Assuntos
Esteroides , Espectrometria de Massas em Tandem , Aminas/análise , Cromatografia Líquida/métodos , Indicadores e Reagentes , Esteroides/análise , Espectrometria de Massas em Tandem/métodos
9.
J Inorg Biochem ; 235: 111935, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932757

RESUMO

Cobalt(III) and rhodium(III) complexes containing the water-soluble porphyrin ligand meso-tri(4-sulfonatophenyl)mono(4-carboxyphenyl)porphine (C1S3TPP), [Rh(C1S3TPP)]Nax•nH2O (1) and [Co(C1S3TPP)]Nax•nH2O (2) were prepared from the direct reaction of free porphyrin and metal chloride salts in refluxing MeOH/DMF or EtOH/H2O. Compounds 1 and 2 were characterized using UV-vis and 1H NMR spectroscopies, and high-resolution mass spectrometry. Cell culture based assays of opioid receptor activation showed that while the rhodium complex reduced fentanyl opioid activity 113-fold to an IC50 value of 1.7 µM, the cobalt complex reduced fentanyl activity by 160-fold to an IC50 value of 2.4 µM. An oxidative mechanism for fentanyl breakdown is proposed.


Assuntos
Porfirinas , Ródio , Cobalto/química , Fentanila/farmacologia , Ligantes , Porfirinas/química , Porfirinas/farmacologia , Ródio/química
10.
J Mass Spectrom Adv Clin Lab ; 24: 50-56, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35469203

RESUMO

Introduction: Ion mobility-mass spectrometry (IM-MS) is an emerging technique in the -omics fields that has broad potential applicability to the clinical lab. As a rapid, gas-phase structure-based separation technique, IM-MS offers promise in isomer separations and can be easily combined with existing LC-MS methods (i.e., LC-IM-MS). Several experimental conditions, including analyte cation adducts and drift composition further provide a means to tune separations for global and/or targeted applications. Objectives: The primary objective of this study was to demonstrate the utility of IM-MS under a range of experimental conditions for detection of glucocorticoids, and specifically for the separation of several isomeric pairs. Methods: LC-IM-MS was used to characterize 16 glucocorticoids including three isomer pairs: cortisone/prednisolone, betamethasone/dexamethasone, and flunisolide/triamcinolone acetonide. Collision cross section (CCS) values were measured for all common adducts (e.g., protonated and sodiated) using both step-field and single-field methods. Alternative alkali, alkaline earth, and transition metals were introduced, such that their adducts could also be measured. Finally, four different drift gases (helium, nitrogen, argon, and carbon dioxide) were compared for their relative separation capability. Results: LC-IM-MS offered a robust, multidimensional separation technique that allowed for the 16 glucocorticoids to be analyzed and separated in three-dimensions (retention time, CCS, and m/z). Despite the relatively modest resolution of isomer pairs under standard conditions (i.e., nitrogen drift gas, sodiated ions, etc.), improvements were observed for alkaline earth and transition metals (notable barium adducts) and in carbon dioxide drift gas. Conclusion: In summary, LC-IM-MS offers potential as a clinical method due to its ease of coupling with traditional LC-MS methods and its promise for tuning separations to better resolve targeted and/or global isomers in complex biological samples.

11.
Inorg Chem ; 61(18): 7032-7042, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35471017

RESUMO

Two series of zinc salts, [EtZn][A] and Zn[A]2, with weakly coordinating anions [A]- as counterions have been prepared, and their activities as catalysts for hydrosilylation reactions of 1-hexene, benzophenone, and acetophenone have been investigated. The counterions and per- and partially chlorinated 1-ammonio-closo-dodecaborate anions [Me3NB12Cl11]- [1]-, [Pr3NB12H5Cl6]- [2]-, [Bu3NB12H4Cl7]- [3]-, and [Hex3NB12H5Cl6]- [4]- were chosen as potential and more readily available alternatives to carborate anions such as [CHB11Cl11]- and [HexCB11Cl11]-. The basicity of anion [4]- was determined as being close to that of the triflimide anion [N(SO2CF3)2]-, and the fluoride ion affinities (FIAs) of compounds [EtZn][2] and Zn[2]2 are lower than those of the Lewis acids B(C6F5)3 and Zn[HexCB11Cl11]2. The higher anion basicity and the resulting lower Lewis acidity of the zinc centers result in low activity in 1-hexene hydrosilylation catalysis and only moderate activity in the hydrosilylation catalysis of benzophenone and acetophenone.

12.
J Am Soc Mass Spectrom ; 33(1): 54-61, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34936363

RESUMO

Anabolic androgenic steroids (AAS) make up one of the most prevalent classes of performance-enhancing drugs banned by the World Anti-Doping Agency (WADA) due to the competitive advantage they can afford athletes. Mass spectrometry-based methods coupled with chromatographic separations have become the gold standard for AAS analysis because of the superior sensitivity and selectivity provided. However, emerging analytical techniques including ion mobility spectrometry (IMS) have been demonstrated in recent applications as a means to further characterize and identify potential unknowns while simultaneously delivering improved sensitivity by filtering noise. Herein we outline the next crucial steps in bringing IMS to the routine drug testing workflow by combining it with established chromatographic and mass spectrometry methods (i.e., LC-IM-MS) for the detection of AAS in human urine. In addition to robust measurement of collision cross sections which can be used for identification purposes, functional group microtrends provide a structural basis on which to elucidate the structure of future novel anabolic agents. Lastly, the developed workflow is tested by analysis of testosterone in a realistic matrix (human urine) and demonstrates a limit of detection of 524 pg/mL, which surpasses the WADA Minimum Required Performance Levels for anabolic steroids. This work is expected to pave the way toward routine incorporation of IMS into analytical drug testing workflows to augment both qualitative and quantitative measure of performance enhancing drugs in the future.

13.
J Am Soc Mass Spectrom ; 32(4): 895-900, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33735566

RESUMO

The objective of this research was to investigate potential changes to unfolding energy barriers for ubiquitin in the presence of the noncanonical amino acid ß-methylamino-l-alanine (BMAA). Although BMAA has been implicated in neurodegenerative disease, its specific role remains unclear. We hypothesized that formation of a ubiquitin + BMAA noncovalent complex would alter the protein's unfolding dynamics in comparison with native ubiquitin alone or in noncovalent complexes with other amino acids. Ion mobility-mass spectrometry (IM-MS) revealed that at sufficiently high concentrations BMAA did in fact form a noncovalent complex with ubiquitin, and similar complexes were identified for a range of additional amino acids. Collision-induced unfolding (CIU) was used to interrogate the unfolding of native ubiquitin and these Ubq-amino acid complexes, showing a major transition from its compact native state (∼1200 Å2) to an unfolded state (∼1400 Å2) at activation energies in the range from 8.0 to 9.0 V (entrance grid delta). The Ubq-BMAA complex, on the other hand, was observed to have a significantly higher energy barrier to unfolding, requiring more than 10.5 V. This indicates that the complex remains more stable under native conditions and this may indicate that BMAA has attached to a critical binding location worthy of further study for its potential role in the onset of neurodegenerative disease.

14.
Chembiochem ; 22(7): 1292-1301, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33238068

RESUMO

Many bacteria, such as Pseudomonas aeruginosa, regulate phenotypic switching in a population density-dependent manner through a phenomenon known as quorum sensing (QS). For Gram-negative bacteria, QS relies on the synthesis, transmission, and perception of low-molecular-weight signal molecules that are predominantly N-acyl-l-homoserine lactones (AHLs). Efforts to disrupt AHL-mediated QS have largely focused on the development of synthetic AHL analogues (SAHLAs) that are structurally similar to native AHLs. However, like AHLs, these molecules tend to be hydrophobic and are poorly soluble under aqueous conditions. Water-soluble macrocycles, such as cyclodextrins (CDs), that encapsulate hydrophobic guests have long been used by both the agricultural and pharmaceutical industries to overcome the solubility issues associated with hydrophobic compounds of interest. Conveniently, CDs have also demonstrated anti-AHL-mediated QS effects. Here, using fluorescence spectroscopy, NMR spectrometry, and mass spectrometry, we evaluate the affinity of SAHLAs, as well as their hydrolysis products, for ß-CD inclusion. We also evaluated the ability of these complexes to inhibit wild-type P. aeruginosa virulence in a Caenorhabditis elegans host infection study, for the first time. Our efforts confirm the potential of ß-CDs for the improved delivery of SAHLAs at the host/microbial interface, expanding the utility of this approach as a strategy for probing and controlling QS.


Assuntos
Acil-Butirolactonas/química , Portadores de Fármacos/química , Percepção de Quorum , beta-Ciclodextrinas/química , Acil-Butirolactonas/síntese química , Acil-Butirolactonas/farmacologia , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/microbiologia , Óvulo/efeitos dos fármacos , Óvulo/microbiologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos , Virulência
15.
Anal Chem ; 92(22): 14930-14938, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33105077

RESUMO

Ion packets introduced from gates, ion funnel traps, and other conventional ion injection mechanisms produce ion pulse widths typically around a few microseconds or less for ion mobility spectrometry (IMS)-based separations on the order of 100 milliseconds. When such ion injection techniques are coupled with ultralong path length traveling wave (TW)-based IMS separations (i.e., on the order of seconds) using structures for lossless ion manipulations (SLIMs), typically very low ion utilization efficiency is achieved for continuous ion sources [e.g., electrospray ionization (ESI)]. Even with the ability to trap and accumulate much larger populations of ions than being conventionally feasible over longer time periods in SLIM devices, the subsequent long separations lead to overall low ion utilization. Here, we report the use of a highly flexible SLIM arrangement, enabling concurrent ion accumulation and separation and achieving near-complete ion utilization with ESI. We characterize the ion accumulation process in SLIM, demonstrate >98% ion utilization, and show both increased signal intensities and measurement throughput. This approach is envisioned to have broad utility to applications, for example, involving the fast detection of trace chemical species.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Razão Sinal-Ruído , Espectrometria de Massas por Ionização por Electrospray
16.
J Am Soc Mass Spectrom ; 31(10): 2086-2092, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32870679

RESUMO

The Paternò-Büchi (PB) reaction is a common organic reaction in which a carbonyl radical formed by exposure to UV radiation reacts with an alkene to form an oxetane ring. Recent analytical applications of this reaction have included the determination of C═C bond position in lipid fatty acyl tails using tandem mass spectrometry. Our group has recently investigated methods for structurally modifying steroid isomers to improve their identification and resolution using ion mobility spectrometry. Herein, we report the first application of the Paternò-Büchi reaction to form steroid oxetanes using a simple, low-cost, and high efficiency method with a low pressure mercury lamp. This methodology is performed on several endogenous steroid isomers, resulting in unique ion mobility spectra that provide a unique fingerprint for each. These fingerprint spectra can add confidence in identification of those compounds, especially in complex biological matrixes. Testosterone and epitestosterone, an epimer pair commonly interrogated in a number of applications such as for their use as performance enhancing drugs, displayed one and three unique ion mobility peaks, respectively. These spectra and their measured collision cross sections (CCS) allow for unambiguous differentiation of these and several other steroid isomer groups analyzed in this work. Finally, multiple anabolic androgenic steroids prohibited by the World Anti-Doping Agency were tested with this method and resulted in unique CCS for their PB reaction products. This approach can offer improved confidence in their identification as well as for many other banned substances.

17.
J Am Soc Mass Spectrom ; 31(2): 411-417, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32031388

RESUMO

Herein we demonstrate the first application of ozone-induced cleavage of endocyclic C═C double bonds for improved steroid isomer separation using ion mobility-mass spectrometry. Steroids represent a challenging biomolecular class for ion mobility (IM) separations due to their structural rigidity and subtle stereochemical differences. In this work, we compare the effects of ozonolysis on the relative mobilities of a model stereoisomer pair, testosterone and epitestosterone. A solution-phase ozonolysis approach is used due to its simplicity, relatively low cost, and potential for rapid, online analysis. Despite the presence of solvent-based addition products, we observe that these steroids undergo an ozone-based cleavage resulting in unique, stable gas-phase conformations. The resulting resolution between testosterone and epitestosterone, with collision cross section values of 176.6 and 193.3 Å2, respectively, demonstrates a significant improvement in comparison with previous IM-based approaches. The significantly smaller conformation observed for epitestosterone is stabilized by a three-point interaction between the oxygen-containing functional groups and a sodium ion; this same conformation cannot be sterically achieved by testosterone. Identification of this specific structural difference is strengthened by experimental results showing the disappearance of this conformation following in-source water loss, which eliminates the potential for that three-point interaction. Computational modeling of the lowest energy gas-phase structures for these ozone products corroborates the experimental results. In conclusion, this approach provides tremendous potential as a rapid IM separation method for steroid isomers and other endocyclic C═C double bond containing molecules.

18.
Anal Chem ; 91(21): 13555-13561, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31592654

RESUMO

Ion mobility was integrated with liquid chromatography/high resolution mass spectrometry (LC/IM-HRMS) to quantify 25-hydroxyvitamin D (25OHD) in human serum. It has previously been shown that 25OHD adopts two gas-phase conformations which are resolved using ion mobility; in contrast, the inactive epimer, 3-epi-25-hydroxyvitamin D (epi25OHD), only adopts one. Interference from epi25OHD was eliminated by filtering the chromatogram to retain the drift time that corresponds to the unique gas-phase conformation of 25OHD. Although ion mobility separates the epimers, some chromatography is required to separate compounds which interfere with ionization or fall at the same nominal m/z. Standards were prepared in 4% albumin solutions and compared against commercial serum quality controls. Standards and quality controls were analyzed and validated using a 2 min LC/IM-MS method. 25-Hydroxyvitamin D3 and D2 were quantified over the range between 2 and 500 ng/mL with bias and precision within 15%. When epi25OHD was spiked into quality control samples, no significant bias was introduced, and analysis of 30 patient samples shows good agreement between this LC/IM-MS and traditional LC/MS/MS methods. This work shows that ion mobility can be incorporated with liquid chromatography and mass spectrometry for rapid quantitation of 25OHD in human serum.


Assuntos
25-Hidroxivitamina D 2/sangue , Calcifediol/sangue , Cromatografia Líquida/métodos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas em Tandem/métodos , Humanos , Limite de Detecção , Padrões de Referência , Reprodutibilidade dos Testes
19.
J Nat Prod ; 82(3): 440-448, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30295480

RESUMO

A series of Wrightia hanleyi extracts was screened for activity against Mycobacterium tuberculosis H37Rv. One active fraction contained a compound that initially appeared to be either the isoflavonoid wrightiadione or the alkaloid tryptanthrin, both of which have been previously reported in other Wrightia species. Characterization by NMR and MS, as well as evaluation of the literature describing these compounds, led to the conclusion that wrightiadione (1) was misidentified in the first report of its isolation from W. tomentosa in 1992 and again in 2015 when reported in W. pubescens and W. religiosa. Instead, the molecule described in these reports and in the present work is almost certainly the isobaric (same nominal mass) and isosteric (same number of atoms, valency, and shape) tryptanthrin (2), a well-known quinazolinone alkaloid found in a variety of plants including Wrightia species. Tryptanthrin (2) is also accessible synthetically via several routes and has been thoroughly characterized. Wrightiadione (1) has been synthesized and characterized and may have useful biological activity; however, this compound can no longer be said to be known to exist in Nature. To our knowledge, this misidentification of wrightiadione (1) has heretofore been unrecognized.


Assuntos
Antituberculosos/isolamento & purificação , Apocynaceae/química , Quinazolinas/isolamento & purificação , Antituberculosos/química , Antituberculosos/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Isoflavonas , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Quinazolinas/química , Quinazolinas/farmacologia
20.
Anal Bioanal Chem ; 411(21): 5363-5372, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30397757

RESUMO

Mass spectrometry (MS)-based analysis of complex biological samples is essential for biomedical research and clinical diagnostics. The separation prior to MS plays a key role in the overall analysis, with separations having larger peak capacities often leading to more identified species and improved confidence in those identifications. High-resolution ion mobility (IM) separations enabled by Structures for Lossless Ion Manipulation (SLIM) can provide extremely rapid, high-resolution separations and are well suited as a second dimension of separation following nanoscale liquid chromatography (nanoLC). However, existing sample handling approaches for offline coupling of separation modes require microliter-fraction volumes and are thus not well suited for analysis of trace biological samples. We have developed a novel nanowell-mediated fractionation system that enables nanoLC-separated samples to be efficiently preconcentrated and directly infused at nanoelectrospray flow rates for downstream analysis. When coupled with SLIM IM-MS, the platform enables rapid and high-peak-capacity multidimensional separations of small biological samples. In this study, peptides eluting from a 100 nL/min nanoLC separation were fractionated into ~ 60 nanowells on a microfluidic glass chip using an in-house-developed robotic system. The dried samples on the chip were individually reconstituted and ionized by nanoelectrospray for SLIM IM-MS analysis. Using model peptides for characterization of the nanowell platform, we found that at least 80% of the peptide components of the fractionated samples were recovered from the nanowells, providing up to ~tenfold preconcentration for SLIM IM-MS analysis. The combined LC-SLIM IM separation peak capacities exceeded 3600 with a measurement throughput that is similar to current one-dimensional (1D) LC-MS proteomic analyses. Graphical abstract A nanowell-mediated multidimensional separation platform that combines nanoLC with SLIM IM-MS enables rapid, high-peak-capacity proteomic analyses.


Assuntos
Cromatografia de Fase Reversa/métodos , Nanotecnologia , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Peptídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...